Ever since major industrialized nations learned how to fuse atoms in megabombs able to blast scores of square miles to smithereens, the quest has been on to harness the vast potential energy store that is nuclear fusion as a viable means to peacefully fuel modern civilization.
Unlike fission, which involves the splitting of atomic nuclei, fusion both produces more energy while generating no radio-active waste. The fuels — hydrogen and helium — are abundant and non-radioactive. Because conventional fusion reactors involve containment fields that force these non-radioactive elements together, they do not operate under dangerous conditions similar to nuclear fission reactors. The fusion reaction bi-products are also common, non-polluting elements together with a heat source used for mechanical work.
Fusion reactors aren’t vulnerable to the same kinds of terrible melt-downs seen at Fukushima and Chernobyl. And the energy density of the fusion reaction itself is extraordinary, producing a potential for…